Тонкостенный стакан перевернули вверх дном и стали медленно погружать в воду. Он начал тонуть на глубине 8 м. Какая часть стакана будет выступать над водой, если его опустить плавать вниз дном?
Чтобы решить эту задачу, нам понадобится знание о принципе Архимеда. Согласно этому принципу, на тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной жидкости. Если эта сила больше веса тела, то оно будет плавать, а если меньше, то тонуть.
В данной задаче стакан перевернут вверх дном, поэтому его полость будет заполнена воздухом. Когда мы начинаем погружать стакан в воду, воздух внутри стакана будет вытесняться водой. При этом, чем глубже мы опускаем стакан, тем больше воздуха будет вытеснено.
Из условия задачи известно, что стакан начинает тонуть на глубине 8 м. Это означает, что на глубине 8 м вес стакана становится больше поддерживающей силы, создаваемой вытесненной водой. То есть, на глубине 8 м стакан перестает плавать и начинает тонуть.
Чтобы найти часть стакана, выступающую над водой, нам нужно найти глубину, на которой стакан перестает тонуть и начинает плавать. Для этого мы можем использовать принцип Архимеда.
Предположим, что вытесненный объем воды на глубине 8 м равен V. Тогда вес этого объема воды будет...