Ударная часть молота массой 10 т свободно падает с высоты 3 м на стальную деталь. Какую массу имеет стальная деталь, если после 20 ударов он...
Условие:
Ударная часть молота массой 10 т свободно падает с высоты 3 м на стальную деталь. Какую массу имеет стальная деталь, если после 20 ударов она нагрелась на 10 °С? На нагревание расходуется 25% энергии молота. Удельную теплоёмкость стали считать равной 500 Дж/(кг·°С).
Решение:
Для решения этой задачи мы можем использовать закон сохранения энергии. Падение молота на деталь приводит к превращению его потенциальной энергии во внутреннюю энергию детали, вызывая ее нагрев.
Сначала найдем энергию, выделяющуюся при падении молота. Потенциальная энергия молота равна произведению его массы на ускорение свободного падения на высоте падения:
E_пот = m * g * h
где m - масса молота, g - ускорение свободного падения, h - высота падения.
Подставляя значения, получаем:
E_пот = 10 т * 9,8 м/с^2 * 3 м = 2940 кДж
Затем найдем энергию, расходуемую на нагревание детали. Для этого найдем 25% от общей энергии молота:
E_нагр = 0,25 * E_пот = 0,25 * 2940 кДж = 735 кДж
Теперь мы можем найти массу стальной детали, используя уравнение:
E_нагр = m_дет * c * ΔT
где m_дет - масса детали, c - удельная теплоемкость стали, ΔT - изменение температуры.
Подставляя значения, получаем:
735 кДж = m_дет * 500 Дж/(кг·°С) * 10 °С
Решая уравнение относительно m_дет, получаем:
m_дет = 735 кДж / (500 Дж/(кг·°С) * 10 °С) = 1,47 кг
Таким образом, масса стальной детали составляет 1,47 кг.