1. ...
  2. ...
  3. ...
  4. Решение задачи на тему: «Монета подбрасывается три раза подряд. Найти вероятность события В 1 {«герб» в...»
Решение задачи

Монета подбрасывается три раза подряд. Найти вероятность события В 1 {«герб» выпал один раз} 2 {« герб» выпал два раза } 3 {« герб» вы...

Теория вероятностей

Условие:

Монета подбрасывается три раза подряд. Найти вероятность события В 1

{«герб» выпал один раз}

2

{« герб» выпал два раза }

3

{« герб» выпал три раза}

4

{« герб» выпал не менее одного раза}

5

{« герб» выпал не менее двух раз}

6

{« герб» выпал не более двух раз }

7

{« герб» не выпал ни разу}

8

{« герб» выпал не более одного раза}

9

Решение:

герб» выпал ровно один раз и не более одного раза}

Для решения этой задачи мы можем использовать биномиальное распределение, так как каждое подбрасывание монеты является независимым событием с двумя возможными исходами - «герб» или «решка».

  1. Вероятность события В1 («герб» выпал один раз) можно найти, используя формулу биномиального распределения:

P(B1) = C(n, k) * p^k * (1-p)^(n-k)

где n - количество подбрасываний монеты (в данном случае 3), k - количество успехов (в данном случае 1), p - вероятность успеха (вероятность выпадения «герба» в одном подбрасывании монеты).

Вероятность успеха p равна 0.5, так как у нас есть два возможных исхода - «герб» или «решка», и они равновероятны.

P(B1) = C(3, 1) * (0.5)^1 * (1-0.5)^(3-1) = 3 * 0.5 * 0.5^2 = 3 * 0.5^3 = 3 * 0.125 = 0.375

Таким образом, вероятность события В1 («герб» выпал один раз) равна 0.375.

  1. Вероятность события В2 («герб» выпал два раза) можно найти аналогичным образом:

P(B2) = C(3, 2) * (0.5)^2 * (1-0.5)^(3-2) = 3 * 0.5^2 * 0.5 = 3 * 0.25 * 0.5 = 0.375

Таким образом, вероятность события В2 («герб» выпал два раза) также равна 0.375.

  1. Вероятность события В3 («герб» выпал три раза) также можно найти аналогичным образом:

P(B3) = C(3, 3) * (0.5)^3 * (1-0.5)^(3-3) = 1 * 0.5^3 * 1 = 0.125

Таким образом, вероятность события В3 («герб» выпал три раза) равна 0.125.

  1. Вероятность события В4 («герб» выпал не менее одного раза) можно найти, используя вероятность дополнения:

P(B4) = 1 - P(«герб» не выпал ни разу) = 1 - P(B7) = 1 - (C(3, 0) * (0.5)^0 * (1-0.5)^(3-0)) = 1 - (1 * 1 * 0.5^3) = 1 - 0.125 = 0.875

Таким образом, вероятность события В4 («герб» выпал не менее одного раза) равна 0.875.

  1. Вероятность события В5 («герб» выпал не менее двух раз) можно найти, используя вероятность дополнения:

P(B5) = 1 - P(«герб» выпал один раз или не выпал ни разу) = 1 - (P(B1) + P(B7)) = 1 - (0.375 + 0.125) = 1 - 0.5 = 0.5

Таким образом, вероятность события В5 («герб» выпал не менее двух раз) равна 0.5.

  1. Вероятность события В6 («герб» выпал не более двух раз) можно найти, используя вероятность дополнения:

P(B6) = 1 - P(«герб» выпал три раза) = 1 - P(B3) = 1 - 0.125 = 0.875

Таким образом, вероятность события В6 («герб» выпал не более двух раз) равна 0.875.

  1. Вероятность события В7 («герб» не выпал ни разу) можно найти аналогичным образом:

P(B7) = C(3, 0) * (0.5)^0 * (1-0.5)^(3-0) = 1 * 1 * 0.5^3 = 0.125

Таким образом, вероятность события В7 («герб» не выпал ни разу) равна 0.125.

  1. Вероятность события В8 («герб» выпал не более одного раза) можно найти, используя вероятность дополнения:

P(B8) = 1 - P(«герб» выпал два раза или три раза) = 1 - (P(B2) + P(B3)) = 1 - (0.375 + 0.125) = 1 - 0.5 = 0.5

Таким образом, вероятность события В8 («герб» выпал не более одного раза) равна 0.5.

  1. Вероятность события В9 («герб» выпал ровно один раз и не более одного раза) можно найти, используя вероятность дополнения:

P(B9) = P(«герб» выпал один раз) + P(«герб» не выпал ни разу) = P(B1) + P(B7) = 0.375 + 0.125 = 0.5

Таким образом, вероятность события В9 («герб» выпал ровно один раз и не более одного раза) также равна 0.5.

Похожие работы

Попробуй и другие функции

  • ИИ для любых учебных целей

    • Научит решать задачи

    • Поможет решать задачи

    • Исправит ошибки в решении

    • Ответит на вопросы за минуту

    Попробовать
  • База готовых рефератов

    • Свыше 1,2 млн работ

    • Больше 160 предметов

    • Работы написали студенты вместе с AI

    • База ежедневно обновляется

    Попробовать

Решения по другим предметам