1. ...
  2. ...
  3. ...
  4. Решение задачи на тему: «5. Миша покупает ручку (Р), тетрадь (Т) и линейку (Л). Продавец достает товары в...»
Решение задачи

5. Миша покупает ручку (Р), тетрадь (Т) и линейку (Л). Продавец достает товары в произвольном порядке. Найдите вероятность того, что: а) сна...

Технология продовольственных продуктов и товаров

Условие:

  1. Миша покупает ручку (Р), тетрадь (Т) и линейку (Л). Продавец достает товары в произвольном порядке. Найдите вероятность того, что: а) сначала продавец достанет линейку; б) продавец достанет тетрадь в последнюю очередь; в) продавец сначала достанет линейку, а в последнюю очередь— ручку; г) тетрадь будет извлечена раньше, чем ручка.

Решение:

Для решения этой задачи нам понадобится знание комбинаторики и правила умножения вероятностей. а) Вероятность того, что продавец сначала достанет линейку, можно вычислить, разделив количество благоприятных исходов на общее количество исходов. В данном случае, количество благоприятных исходов равно 1 (линейка может быть только одна), а общее количество исходов равно 3 (так как продавец может достать любой из трех предметов первым). Таким образом, вероятность равна 1/3. б) Вероятность того, что продавец достанет тетрадь в последнюю очередь, также можно вычислить, разделив количество благоприятных исходов на общее количество исходов. В данном случае, количество благоприятных исходов равно 1 (тетрадь может быть только одна), а общее количество исходов также равно 3. Таким образом, вероятность равна 1/3. в) Вероятность того, что продавец сначала достанет линейку, а в последнюю очередь - ручку, можно вычислить, разделив количество благоприятных исходов на общее количество исходов. В данном случае, количество благоприятных исходов равно 1 (линейка может быть только одна, а ручка - только одна), а общее количество исходов равно 6 (так как продавец может достать любой из трех предметов первым, затем любой из оставшихся двух вторым и оставшийся предмет третьим). Таким образом, вероятность равна 1/6. г) Вероятность того, что тетрадь будет извлечена раньше, чем ручка, можно вычислить, разделив количество благоприятных исходов на общее количество исходов. В данном случае, количество благоприятных исходов равно 2 (тетрадь может быть достанута первой, а ручка - второй или наоборот), а общее количество исходов равно 6 (так как продавец может достать любой из трех предметов первым, затем любой из оставшихся двух вторым и оставшийся предмет третьим). Таким образом, вероятность равна 2/6 или 1/3. Итак, ответы на задачу: а) Вероятность того, что сначала продавец достанет линейку, равна 1/3. б) Вероятность того, что продавец достанет тетрадь в последнюю очередь, равна 1/3. в) Вероятность того, что продавец сначала достанет линейку, а в последнюю очередь - ручку, равна 1/6. г) Вероятность того, что тетрадь будет извлечена раньше, чем ручка, равна 1/3.

Похожие работы

Попробуй и другие функции

  • ИИ для любых учебных целей

    • Научит решать задачи

    • Поможет решать задачи

    • Исправит ошибки в решении

    • Ответит на вопросы за минуту

    Попробовать
  • База готовых рефератов

    • Свыше 1,2 млн работ

    • Больше 160 предметов

    • Работы написали студенты вместе с AI

    • База ежедневно обновляется

    Попробовать

Решения по другим предметам